Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Superlattice formation dictates the physical properties of many materials, including the nature of the ground state in magnetic materials. Chemical composition is commonly considered to be the primary determinant of superlattice identity, especially in intercalation compounds. Nevertheless, in this work, we find that kinetic control of superlattice growth leads to the coexistence of disparate crystallographic domains within a compositionally perfect single crystal. We demonstrate that Cr1/4TaS2is a noncollinear antiferromagnet in which scattering between majority and minority superlattice domains engenders complex magnetotransport below the Néel temperature, including an anomalous Hall effect. We characterize the magnetic phases in different domains, image their nanoscale morphology, and propose a mechanism for nucleation and growth using a suite of experimental probes coupled with first-principles calculations and symmetry analysis. These results provide a blueprint for the deliberate engineering of macroscopic transport responses via microscopic tuning of magnetic exchange interactions in superlattice domains.more » « less
-
Abstract The construction of thin film heterostructures has been a widely successful archetype for fabricating materials with emergent physical properties. This strategy is of particular importance for the design of multilayer magnetic architectures in which direct interfacial spin-spin interactions between magnetic phases in dissimilar layers lead to emergent and controllable magnetic behavior. However, crystallographic incommensurability and atomic-scale interfacial disorder can severely limit the types of materials amenable to this strategy, as well as the performance of these systems. Here, we demonstrate a method for synthesizing heterostructures comprising magnetic intercalation compounds of transition metal dichalcogenides (TMDs), through directed topotactic reaction of the TMD with a metal oxide. The mechanism of the intercalation reaction enables thermally initiated intercalation of the TMD from lithographically patterned oxide films, giving access to a family of multi-component magnetic architectures through the combination of deterministic van der Waals assembly and directed intercalation chemistry.more » « less
-
Molecular-beam epitaxy enables ultrathin functional materials to be combined in heterostructures to create emergent phenomena at the interface. Magnetic skyrmions are an example of an exciting phase found in such heterostructures. SrRuO3 and SrRuO3-based heterostructures have been at the center of the debate on whether a hump-like feature appearing in Hall resistivities is sufficient evidence to prove the presence of skyrmions in a material. To address the ambiguity, we synthesize a model heterostructure with engineered Berry curvature that combines, in parallel, a positive anomalous Hall effect (AHE) channel (a Sr0.6Ca0.4RuO3 layer) with a negative AHE channel (a SrRuO3 layer). We demonstrate that the two opposite AHE channels can be combined to artificially reproduce a “hump-like” feature, which closely resembles the hump-like feature typically attributed to the topological Hall effect and the presence of chiral spin textures, such as skyrmions. We compare our heterostructure with a parallel resistor model, where the inputs are the AHE data from individual Sr0.6Ca0.4RuO3 and SrRuO3 films. To check for the presence of skyrmions, we measure the current dependence, angle dependence, and minor loop dependence of Rhump in the heterostructure. Despite the clear hump, no evidence of skyrmions is found.more » « less
-
The unconventional superconductivity in Sr2RuO4 is infamously susceptible to suppression by small levels of disorder such that it has been most commonly studied in extremely high-purity bulk crystals. Here, we harness local structural and spectroscopic scanning transmission electron microscopy measurements in epitaxial thin films of Sr2RuO4 to disentangle the impact of different types of crystalline disorder on superconductivity. We find that cation off-stoichiometry during growth gives rise to two distinct types of disorder: mixed-phase structural inclusions that accommodate excess ruthenium and ruthenium vacancies when the growth is ruthenium-deficient. Several superconducting films host mixed-phase intergrowths, suggesting this microstructural disorder has relatively little impact on superconductivity. In a non-superconducting film, on the other hand, we measure a high density of ruthenium-vacancies (∼14%) with no significant reduction in the crystallinity of the film. The results suggest that ruthenium vacancy disorder, which is hidden to many structural probes, plays an important role in suppressing superconductivity. We discuss the broader implications of our findings to guide the future synthesis of this and other layered systems.more » « less
-
We demonstrate a-axis YBa2Cu3O7−x/PrBa2Cu3O7−x/YBa2Cu3O7−x trilayers grown on (100) LaAlO3 substrates with improved interface smoothness. The trilayers are synthesized by ozone-assisted molecular-beam epitaxy. The thickness of the PrBa2Cu3O7−x layer is held constant at 8 nm, and the thickness of the YBa2Cu3O7−x layers is varied from 24 nm to 100 nm. X-ray diffraction measurements show all trilayers to have >97% a-axis content. The rms roughness of the thinnest trilayer is <0.7 nm, and this roughness increases with the thickness of the YBa2Cu3O7−x layers. The thickness of the YBa2Cu3O7−x layers also affects the transport properties: while all samples exhibit an onset of the superconducting transition at and above 85 K, the thinner samples show wider transition widths, ΔTc. High-resolution scanning transmission electron microscopy reveals coherent and chemically sharp interfaces and that growth begins with a cubic (Y,Ba)CuO3−x perovskite phase that transforms into a-axis oriented YBa2Cu3O7−x as the substrate temperature is ramped up.more » « less
-
Homologous series are layered phases that can have a range of stoichiometries depending on an index n. Examples of perovskite-related homologous series include (ABO3)nAO Ruddlesden–Popper phases and (Bi2O2) (An−1BnO3n+1) Aurivillius phases. It is challenging to precisely control n because other members of the homologous series have similar stoichiometry and a phase with the desired n is degenerate in energy with syntactic intergrowths among similar n values; this challenge is amplified as n increases. To improve the ability to synthesize a targeted phase with precise control of the atomic layering, we apply the x-ray diffraction (XRD) approach developed for superlattices of III–V semiconductors to measure minute deviations from the ideal structure so that they can be quantitatively eradicated in subsequent films. We demonstrate the precision of this approach by improving the growth of known Ruddlesden–Popper phases and ultimately, by synthesizing an unprecedented n = 20 Ruddlesden–Popper phase, (ATiO3)20AO where the A-site occupancy is Ba0.6Sr0.4. We demonstrate the generality of this method by applying it to Aurivillius phases and the Bi2Sr2Can–1CunO2n+4 series of high-temperature superconducting phases.more » « less
-
We report the growth of superconducting Sr2RuO4 thin films by molecular-beam epitaxy on (110) NdGaO3 substrates with transition temperatures of up to 1.8 K. We calculate and experimentally validate a thermodynamic growth window for the adsorption-controlled growth of superconducting Sr2RuO4 epitaxial thin films. The growth window for achieving superconducting Sr2RuO4 thin films is narrow in growth temperature, oxidant pressure, and ruthenium-to-strontium flux ratio.more » « less
-
Abstract The occurrence of unconventional superconductivity in cuprates has long motivated the search for manifestations in other layered transition metal oxides. Recently, superconductivity is found in infinite‐layer nickelate (Nd,Sr)NiO2and (Pr,Sr)NiO2thin films, formed by topotactic reduction from the perovskite precursor phase. A topic of much current interest is whether rare‐earth moments are essential for superconductivity in this system. In this study, it is found that with significant materials optimization, substantial portions of the La1−xSrxNiO2phase diagram can enter the regime of coherent low‐temperature transport (x = 0.14 ‐ 0.20), with subsequent superconducting transitions and a maximum onset of ≈9 K atx = 0.20. Additionally, the unexpected indication of a superconducting ground state in undoped LaNiO2is observed, which likely reflects the self‐doped nature of the electronic structure. Combining the results of (La/Pr/Nd)1−xSrxNiO2reveals a generalized superconducting dome, characterized by systematic shifts in the unit cell volume and in the relative electron‐hole populations across the lanthanides.more » « less
An official website of the United States government
